
Journal of Econometrics and Statistics
Vol. 2, Issue 2, 2022, pp. 219-232
https://doi.org/10.47509/JES.2022.v02i02.05
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Abstract

In many cases, parameter estimation results in limiting normality.

This allows for approximate confidence intervals and significance tests.

Often, one wishes to bound the length of confidence intervals and to

guarantee a certain power for tests. These issues depend on the sam-

ple size: How large does it have to be? We provide simple formulae

answering this question. Numerical examples show that reasonably

reliable inference requires in some cases rather large samples.
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1 Introduction

Clinical trials and statistical experiments may be very costly in terms of

money and time. This is one reason to keep the sample sizes n small or

moderate. However, precision of estimators and power of significance tests

crucially hinge on the sample size. Hence, it is helpful to have an answer to

the question: “How large should n be when testing at significance level 5%

to ensure a power of 80%?” Of course you may wish to replace the numbers

5 and 80 by different figures. In fact, the answer is not difficult to come up

with; the problem rather is that the question is rarely asked.

The starting point of this short note is limiting normality of some appropri-

ately scaled estimator. This allows to, first, compute approximate confidence

intervals (CI) and determine how large n has to be such that the length does

not exceed a given number. Second, it allows to carry out approximate sig-

nificance tests, and an evaluation of the approximate power function answers

the above question in inverted commas. The issue of CIs is addressed in

the next section. Section 3 is dedicated to the power analysis of significance

tests. Three worked numerical examples are contained in Section 4. They

show that our very simple formulae may give surprising answers to the ques-

tion raised in the title of our note. The results are summarized in the final

section to provide an empirical guideline.

A word on notation before we begin. Let
D→ stand for convergence in distri-

bution as the sample size n goes off to infinity, and
p→ signifies convergence
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in probability. The cumulative distribution function of a random variable

following a standard normal distribution, N (0, 1), is denoted by Φ (·), and

zp stands for the p quantile thereof. The ceiling function �x� returns the

smallest integer larger than or equal to some real x. For a bijective function

h(·), the inverse function is written as h−1(·).

2 Framework and Assumptions

We consider inference about some parameter θ resting on limiting normality.

The parameter is estimated by θ̂n from a sample of size n. We assume a limit

theorem to hold in that

√
m

(
θ̂n − θ

)
D→ N (0, σ2) as n → ∞ , (1)

where m is the rate of convergence with

m = h(n) and
1

m
→ 0 . (2)

Note that m = h(n) → ∞ implies a population of infinite size from that

the sample is drawn. Typically, the constant σ2 is unknown and has to be

estimated consistently: σ̂2
n

p→ σ2 as n → ∞. In practice, (1) is employed to

construct (approximate) CIs or to perform significance tests.
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Remark 1: For the rest of the paper we assume a known bijection h(·). Note

that n has to be a natural number. For givenm we hence pick n = �h−1 (m)�.

A centered confidence interval at level 1− α is readily available from (1):

CI1−α =

[
θ̂n ± z1−α

2

σ√
m

]
.

For a given confidence level 1 − α one would like the length not to exceed

a given number � > 0. This obviously depends on the variance, too. For a

length to be bounded by � it is required that

m ≥ M(�;α, σ) := 4 z21−α
2

σ2

�2
. (3)

Remark 2: If σ2 is unknown, we need a preliminary variance estimation to

use (3). To that end, assume a preliminary, reasonably large sample of size

n∗ yielding σ̂2
n∗ with σ̂2

n∗
p→ σ2 as n∗ → ∞ to be plugged in. Hence, a required

minimum sample size can be determined according to (3) and Remark 1:

n(�;α, σ̂n∗) = �h−1 (M(�;α, σ̂n∗))� , M(�;α, σ̂n∗) := 4 z21−α
2

σ̂2
n∗

�2
.

Confidence intervals and significance testing are related issues. Let θ0 denote

a prespecified value under the null hypothesis, and d measures the effect size,

the strength of violation under the alternative H1:

H0 : θ = θ0 vs. H1 : θ = θ0 + d , d �= 0 . (4)
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In case of a two-tailed test, H0 is rejected at significance level α if and only

if CI1−α does not cover θ0. This is equivalent to

Z0 < −z1−α
2

or Z0 > z1−α
2
, Z0 :=

√
m

θ̂n − θ0
σ̂n

, (5)

where we assume again that the variance is estimated consistently by σ̂2
n.

3 Approximate Power

How large does n have to be to guarantee a power of 1 − β when testing

at significance level α if H1 holds true? Here, β is the probability of a

type II error, i. e. the probability not to reject the null hypothesis when the

alternative holds true. This question has been addressed (for special cases)

in classical textbooks such as Snedecor and Cochran (1967, Sect. 4.13) and

Fleiss (1981, Ch. 2), see also Lehr (1992). The answer will depend on the

relative effect size under H1:

δ :=
d

σ
. (6)

Let Πm(δ;α) be the (approximate) power function depending on δ: Πm(δ;α) :=

P(|Z0| > z1−α
2
). Because of (1),

Πm(δ;α) = 1− Φ
(
z1−α

2
−
√
mδ

)
+ Φ

(
−z1−α

2
−
√
mδ

)
. (7)

Since (1) holds only as n → ∞, it would be more precise to replace “=” by
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“≈” in (7); we neglect this for convenience. By definition, Πm(δ;α) = 1− β

or

β = Φ
(
z1−α

2
−
√
mδ

)
− Φ

(
−z1−α

2
−
√
mδ

)
.

For small α with Φ
(
−z1−α

2

)
being small, one may approximate β. First,

if δ > 0, Φ
(
−z1−α

2
−

√
mδ

)
is even smaller than Φ

(
−z1−α

2

)
. In that sense,

β ≈ Φ
(
z1−α

2
−

√
mδ

)
. Second and similarly, for small α with Φ

(
z1−α

2

)
being

large, one may approximate if δ < 0: Φ
(
z1−α

2
−
√
mδ

)
is even larger than

Φ
(
z1−α

2

)
, such that Φ

(
z1−α

2
−
√
mδ

)
≈ 1. Due to symmetry it follows that

β ≈ 1− Φ
(
−z1−α

2
−

√
mδ

)
= Φ

(
z1−α

2
+
√
mδ

)
= Φ

(
z1−α

2
−
√
m |δ|

)
.

Both cases together yield β ≈ Φ
(
z1−α

2
−
√
m |δ|

)
, where the approximation is

all the better the smaller α is. Consequently, zβ ≈ z1−α
2
−
√
m |δ|. Neglecting

the approximation error yields

m(α, β; δ) :=

(
z1−α

2
− zβ

)2
δ2

, (8)

such that m ≥ m(α, β; δ) ensures (approximately) a minimum power of 1−β.

Again, the corresponding sample size n(α, β; δ) is determined according to

Remark 1.

Remark 3: In practice, of course neither d from (4) under H1 nor σ from

(1) are known. The difference d can be replaced by θ̂n∗ − θ0 for some prelim-
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inary sample of size n∗, and a preliminary variance estimator σ̂2
n∗ is available

according to Remark 2, too. Hence, a required minimum rate m can be de-

termined as m(α, β; δ̂n∗) with δ̂n∗ := (θ̂n∗−θ0)/σ̂n∗ . As in Remark 1, one may

determine the required sample size n(α, β; δ̂n∗) to ensure a power of 1− β.

Remark 4: Let us briefly consider one-tailed tests at significance level α.

To ensure a rejection probability of 1− β for one-tailed tests at level α, (8)

has to be replaced by

m(α, β; δ) =
(z1−α − zβ)

2

δ2
or

√
m(α, β; δ) =

z1−α − zβ
|δ|

, (9)

where β < 1 − α is assumed. Note that the same symbol m(α, β; δ) is used

for two-tailed and one-tailed tests.

4 Three Numerical Examples

Equality of means: The first example embeds a result found in Lehr

(1992) when testing for equality of means from paired samples. Consider

bivariate random samples, (Yi, Zi), i = 1, . . . , n, with variances σ2
Y and σ2

Z

and correlation ρ. We wish to test for equality of means, µY and µZ :

H0 : µY − µZ = 0 vs. H1 : µY − µZ = d .

To match the above framework, we define the differences Xi = Yi − Zi with
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θ = µY − µZ , θ̂n = X = 1
n

∑n
i=1 Xi and call on the following central limit

theorem:

√
n
(
X − (µY − µZ)

) D→ N (0, σ2) , σ2 := σ2
Y + σ2

Z − 2 ρ σY σZ .

For ρ = 0 and σ2
Y = σ2

Z , m(α, β; δ) from (8) specializes to the formula in

Lehr (1992, p. 1101). In the general case, consistent variance estimation is

given by σ̂2
n = 1

n−1

∑n
i=1

(
Xi −X

)2
.

Let us assume some preliminary n∗ as in Remark 3 resulting in a standard

deviation σ̂n∗ estimating σ. Consider the effect d as a portion of the standard

deviation with δ̂n∗ = d/σ̂n∗ or d = δ̂n∗ σ̂n∗ . How large does n have to be to

detect d = δ̂n∗ σ̂n∗ with a power of 80% when testing at a 5% level (two-

tailed)? According to (8) the answer is given by

n(0.05, 0.2; δ̂n∗) =

⌈
(z0.975 − z0.2)

2

δ̂2n∗

⌉
.

From the following table we learn that detecting (with power of 80%) a

difference d half as large as the standard deviation requires only n = 32,

while a detection of d = 0.1 · σ̂n∗ requires n = 785.

δ̂n∗ 0.5 0.4 0.3 0.2 0.1

n(0.05, 0.2; δ̂n∗) 32 50 88 197 785

Tail index: Second, consider the tail index θ indicating the highest finite
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moment of a random variable. Nicolau and Rodrigues (2019, Sect. III) pro-

posed a new estimator θ̂n. Under the assumption of independent identically

distributed (iid) random variates following a Pareto distribution it holds that

(Nicolau and Rodrigues (2019, Thm. 1))

√
n
(
θ̂n − θ

)
D→ N (0, σ2) , σ2 = 2 θ2. (10)

If the distributional assumptions are weakened and the random sequence

does not obey an exact Pareto law but only a Pareto-type tail behaviour, see

Nicolau and Rodrigues (2019, eq. (8)), then the convergence becomes slower

(still under iid):

√
m

(
θ̂n − θ

)
D→ N (0, σ2) with m = nγ , σ2 = 2 θ2, (11)

where γ < 1.

For θ ≤ 2, finite second moments do not exist. Hence, a null hypothesis

of interest is θ0 = 2. Nicolau and Rodrigues (2019, Sect. V) analyse daily

absolute returns from January 1, 1999, to May 16, 2016, which amounts to

n∗ = 4, 532. For the Hong Kong dollar, they find that θ̂n∗ = 2.27. Hence by

Remark 3 and with σ̂2
n∗ = 2 θ̂2n∗ , δ̂n∗ = (2.27− 2)/(2.27

√
2). For a one-tailed

test at 5% with a power of 1−β = 0.8, Remark 4 provides for (10) with (9):

m(0.05, 0.20; δ̂n∗) = 874.02 or n(0.05, 0.20; δ̂n∗) = 875 .
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To apply (11), Nicolau and Rodrigues (2019, Fig. 5) choose m such that

m/n = nγ−1 = 0.10. With n∗ = 4, 532 this implies γ = 0.7265 or according to

Remark 1 n = �m1.3765�. Without assuming exact Pareto, an 80% power one-

tailed test according to (11) requires n(0.05, 0.20; δ̂n∗) = 11, 195 for α = 0.05.

The example shows that reliable significance tests for tail indexes require

rather large sample sizes.

Note that these computations are not directly applicable to the empirical

analysis by Nicolau and Rodrigues (2019), because the simple variance ex-

pression from (10) or (11) holds only under the restrictive iid assumption.

This assumption is not met by daily absolute returns. For more general sta-

tionary processes Nicolau and Rodrigues (2019, Thm. 3) establish limiting

normality with a more complicated variance expression that can be handled

by means of robust standard errors.

Long memory: The third example is from the realm of time series analysis.

Let θ now denote the parameter of fractional integration. A fractionally in-

tegrated process or time series is stationary and has so-called short memory

if θ ≤ 0; it is stationary and displays long memory if 0 < θ < 0.5; and it

becomes nonstationary for θ ≥ 0.5. A popular estimator is the so-called lo-

cal Whittle estimator explored by Robinson (1995) and Velasco (1999). It is

settled in the frequency domain and relies on computation atm harmonic fre-

quencies. It holds asymptotically for −0.5 < θ < 0.75 under some technical
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assumptions that

√
m

(
θ̂n − θ

)
D→ N

(
0,

1

4

)
, m = n0.65 . (12)

For modified and extended versions of local Whittle and for a larger range of

θ, (12) continues to hold according to Abadir, Distaso, and Giraitis (2007)

and Shimotsu and Phillips (2005). In practice, m has to be chosen to balance

a trade-off between finite sample bias and variance of θ̂n. The rate m is often

determined as m = n0.65 following recommendations by Abadir et al. (2007,

p. 1363) and Shimotsu (2010, p. 515). One nice feature is that σ = 1
2
in

(12) does not vary with θ. This allows to use (3) without Remark 2 when

setting up a CI. Since a difference in θ of absolute value 0.1 makes a sizeable

difference in terms of (long) memory we want the maximum length of CI to

be bounded by � = 0.1. At a 95% confidence level, (3) provides

M(0.1; 0.05, 0.5) = 4 · 1.9620.25
0.01

= 384.16 .

Since m = n0.65, n(0.1; 0.05, 0.5) = �M(0.1; 0.05, 0.5)1.5385� = 9, 469: A CI at

95% confidence level of maximum length 0.1 requires almost 9,500 observa-

tions. This shows that, due to the slow convergence rate m = n0.65, reliable

inference about long memory requires rather large sample sizes. This will

equally hold true when it comes to hypothesis testing.
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Hypotheses of interest are short memory against long memory,

H0 : θ = 0 vs. H1 : θ = d > 0 ,

or nonstationarity against stationarity:

H0 : θ = 0.5 vs. H1 : θ = 0.5 + d , d < 0 .

The relative effect size becomes δ = d/σ = 2 d. Let us assume d = 0.10 for

the first pair of hypotheses and d = −0.10 for the second pair, which is from

a substantive point of view considerably distant from both null hypotheses.

Remark 4 gives for the one-tailed tests at 5% level with a power of 80%

(β = 0.2) that

m(0.05, 0.20; 0.20) =
(z0.95 − z0.2)

2

0.22
= 154.56 ,

resulting in n(0.05, 0.20; 0.20) = �154.561.5385� = 2, 334. This reinforces that

significant inference about long memory requires large samples.

5 Summary

The starting point is limiting normality of some parameter estimator as in

(1). Centered confidence intervals at level 1 − α follow immediately. To

bound their length by some maximum length one may choose the sample size
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according to (3) in connection with Remark 2. To guarantee an approximate

minimum power of 1 − β when performing a two-tailed test at significance

level α, one may rely on (8) together with Remark 3. For one-tailed tests

one should employ (9) instead.

References

Abadir, K. M., W. Distaso, and L. Giraitis (2007). Nonstationarity-extended

local Whittle estimation. Journal of Econometrics 141, 1353–1384.

Fleiss, J. L. (1981). Statistical Methods for Rates and Proportions (3rd ed.).

Wiley.

Lehr, R. (1992). Sixteen S-squared over D-squared: A relation for crude

sample size estimates. Statistics in Medicine 11, 1099 – 1102.

Nicolau, J. and P. M. M. Rodrigues (2019). A new regression-based tail index

estimator. The Review of Economics and Statistics 101 (4), 667 – 680.

Robinson, P. M. (1995). Gaussian semiparametric estimation of long range

dependence. Annals of Statistics 23, 1630–1661.

Shimotsu, K. (2010). Exact local Whittle estimation of fractional integration

with unknown mean and trend. Econometric Theory 26, 501–540.

Shimotsu, K. and P. C. B. Phillips (2005). Exact local Whittle estimation of

fractional integration. The Annals of Statistics 33, 1890–1933.

13



232 Journal of Econometrics and Statistics

Snedecor, G. W. and W. G. Cochran (1967). Statistical Methods (6th ed.).

Iowa State University Press.

Velasco, C. (1999). Gaussian semiparametric estimation of non-stationary

time series. Journal of Time Series Analysis 20, 87–127.

14


